Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis.

نویسندگان

  • Huachun Wang
  • Njabulo Ngwenyama
  • Yidong Liu
  • John C Walker
  • Shuqun Zhang
چکیده

Stomata are specialized epidermal structures that regulate gas (CO(2) and O(2)) and water vapor exchange between plants and their environment. In Arabidopsis thaliana, stomatal development is preceded by asymmetric cell divisions, and stomatal distribution follows the one-cell spacing rule, reflecting the coordination of cell fate specification. Stomatal development and patterning are regulated by both genetic and environmental signals. Here, we report that Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6, two environmentally responsive mitogen-activated protein kinases (MAPKs), and their upstream MAPK kinases, MKK4 and MKK5, are key regulators of stomatal development and patterning. Loss of function of MKK4/MKK5 or MPK3/MPK6 disrupts the coordinated cell fate specification of stomata versus pavement cells, resulting in the formation of clustered stomata. Conversely, activation of MKK4/MKK5-MPK3/MPK6 causes the suppression of asymmetric cell divisions and stomatal cell fate specification, resulting in a lack of stomatal differentiation. We further establish that the MKK4/MKK5-MPK3/MPK6 module is downstream of YODA, a MAPKKK. The establishment of a complete MAPK signaling cascade as a key regulator of stomatal development and patterning advances our understanding of the regulatory mechanisms of intercellular signaling events that coordinate cell fate specification during stomatal development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development.

Coordination between cell proliferation and differentiation is essential to create organized and functional tissues. Arabidopsis thaliana stomata are created through a stereotyped series of symmetric and asymmetric cell divisions whose frequency and orientation are informed by cell-cell interactions. Receptor-like proteins and a mitogen-activated protein kinase kinase kinase were previously ide...

متن کامل

Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development.

Stomata are microscopic valves on the plant epidermis that played a critical role in the evolution of land plants. Studies in the model dicot Arabidopsis thaliana have identified key transcription factors and signaling pathways controlling stomatal patterning and differentiation. Three paralogous Arabidopsis basic helix-loop-helix proteins, SPEECHLESS (SPCH), MUTE, and FAMA, mediate sequential ...

متن کامل

What causes opposing actions of brassinosteroids on stomatal development?

During the past few years, our understanding of stomatal development and patterning has been advanced by the cloning of a large number of genes in Arabidopsis (Arabidopsis thaliana). These genes encode peptide ligands (epidermal patterning factor, or EPF), and receptor proteins (TOO MANY MOUTHS [TMM] and the ERECTA family [ERf] of receptor-like kinases [ER, ERL1, and ERL2]; Nadeau and Sack, 200...

متن کامل

Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana.

Brassinosteroids (BRs) are steroid hormones that coordinate fundamental developmental programs in plants. In this study we show that in addition to the well established roles of BRs in regulating cell elongation and cell division events, BRs also govern cell fate decisions during stomata development in Arabidopsis thaliana. In wild-type A. thaliana, stomatal distribution follows the one-cell sp...

متن کامل

Determination of primary sequence specificity of Arabidopsis MAPKs MPK3 and MPK6 leads to identification of new substrates.

MAPKs (mitogen-activated protein kinases) are signalling components highly conserved among eukaryotes. Their diverse biological functions include cellular differentiation and responses to different extracellular stress stimuli. Although some substrates of MAPKs have been identified in plants, no information is available about whether amino acids in the primary sequence other than proline-direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2007